
Download free eBooks at bookboon.com

Prolog Techniques

75

Program Manipulations

Chapter 3

Program Manipulations

In Prolog, unlike in most other programming languages, there is no clear distinction between program code and
data. In this chapter, we are going to demonstrate how this feature of Prolog can be made use of in practice. In
Sect. 3.1 we discuss the built-in Prolog predicates for basic database maintenance work. In Sect. 3.2 we present
a tool for automated program unfolding, a program transformation technique the ‘manual’ form of which we
met in Sect. 2.3.1. Finally, in Sect. 3.3 we show how Prolog can be used to define a Prolog program some
features of which are specified at runtime.

3.1 Simple Database Operations

In this section, we illustrate by a simple example how the Prolog database can be modified from within the
Prolog system.

The Round Table

Six people are seated at a round table as shown in Fig. 3.1. The predicate right to/2 , defined in (P-3.1) by
six facts, describes the seating arrangement in an obvious fashion.

Prolog Code P-3.1: Initial definition of right to/2

1 right_to(martin,lisa). right_to(lisa,george).

2 right_to(george,clara). right_to(clara,adam).

3 right_to(adam,susan). right_to(susan,martin).

Exercise 3.1. Write queries to answer the following questions:

(a) Who is seated to the right of Adam?

(b) To whom is Clara the right neighbour?

(c) Who are the neighbours of George?

Define Prolog rules for

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

76

Program Manipulations

�
��

�
� �

Susan

Martin

Adam

Lisa

Clara

George

Figure 3.1: The Initial Seating Arrangement

(d) ”... is seated to the left of ...”

(e) ”... are the neighbours of ...”

(f) ”... is seated opposite to ...”

Hints. The envisaged solution for this exercise is elementary and concise and should make no use of lists. The
following is suggested for solving part (f):

• If we want to find the person seated opposite to Adam, say, it will help to imagine that the party are
seated not at a round table but at a long rectangular one at the head of which is seated Adam (Fig. 3.2).

• Define an auxiliary predicate facing/3 returning all pairs of people facing each other from one particular
person’s point of view (here: Adam’s), and, eventually, facing that person himself. facing/3 should
respond as follows.

?- facing(adam,Left,Right).

Left = clara Right = susan ;

Left = george Right = martin ;

Left = lisa Right = lisa ;

No

• Now implement opposite to/2 using facing/3 .

• opposite to/2 should fail if the number of people around the table is odd.

�

Exercise 3.2. Further useful predicates may be defined for the Round Table example.

(a) Write a predicate guests/0 for displaying the names of all those at the table. (Use a failure driven loop;
see inset on p. 77.) guests/0 should fail only if there aren’t any people at the table.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

77

Program Manipulations

� �

� �
� �

George Clara

Martin Susan

AdamLisa

Figure 3.2: Rectangular Table

Built-in Predicates: fail/0 and true/0

fail/0 always fails. true/0 always succeeds. Failure driven loops may be
defined by fail/0 . Example:

?- right to(X,), write(X), write(’ ’), fail; true.

martin lisa george clara adam susan

Yes

(b) Use a failure driven loop to define a predicate opposites/0 for displaying all pairs seated opposite each
other:

?- opposites.

martin, clara

lisa, adam

george, susan

adam, lisa

susan, george

clara, martin

Yes

?- joins(fred,clara,adam). 1

fred has joined the table.

Yes

?- opposites.

No

(c) Use the accumulator technique to define a predicate look right(+Person) for displaying all the guests’
names counterclockwise, starting with a particular person. Example:

?- look right(george).

1See Sects. 3.1.3 and 3.1.4for how to implement joins/3 . Here it is used only to indicate that opposites/0 should fail for an
odd number of guests in the database.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

78

Program Manipulations

george clara adam susan martin lisa

Yes

�

Departures and Arrivals

Initially, we will have read the facts in (P-3.1), p. 75, into memory by consult/1 (or by some equivalent thereof).
It is important at this stage to remember that the database comprises all predicates loaded in memory; these
will be those defined by the user as well as the built-in ones. Let us now assume that we want to model the
departure from, and the arrival to, the table of people by updating the database.

Departures. Departures will obviously involve removal of clauses from the database. To model, for example,
George’s departure, we shall have to remove all facts referencing George. In addition, former neighbours
of George will now be seated next to each other, necessitating additions to the database. Thus, to record
departures, we shall need both deletion from, and addition to, the database.

Arrivals. Arrivals will clearly involve an augmentation of the definition of right to/2 by new facts. To
model for example the arrival of Tracy and Joe, to be seated between Adam and Susan, we will have to add
the three facts in (P-3.2) to the database.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Prolog Techniques

79

Program Manipulations

Prolog Code P-3.2: New facts for right to/2

1 right_to(adam,tracy). right_to(tracy,joe). right_to(joe,susan).

And, we will have to remove the fact indicating that Susan is Adam’s right-hand neighbour:

right_to(adam,susan).

Therefore, to account for arrivals, both deletion from, and addition to the database will need to be done.

3.1.1 Basic Database Manipulation

We now review a few basic built-in predicates for modifying the database.

• We use retract/1 (or retractall/1) to remove a clause (or all clauses of a predicate) from the database.
The predicate whose clause is retracted has to be declared dynamic , implemented either as a directive in
one of the source files or by calling dynamic/1 as a goal just before retract ing. This is achieved in our
example either by including in one of the files consulted the directive

:- dynamic(right to/2).

or interactively by

?- dynamic(right to/2), retract(right to(X,Y)).

Built-in Predicate: retract(+Term)

Removes from the database the first clause unifying with Term . Example:

?- listing(right to(X,Y)).

right to(martin, lisa).

right to(lisa, george).

...

?- retract(right to(,)).

Yes

?- listing(right to(X,Y)).

right to(lisa, george).

...

• We use assert/1 to add a new clause to the database.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

80

Program Manipulations

Built-in Predicate: assert(+Term)

Adds to the database the clause in Term . Example: a possible (reasonable)
definition by assert/2 of a predicate near/2 for the Round Table example
may be achieved by2

?- assert(near(X,Y) :- (right to(X,Z), right to(Z,Y))).

?- assert(near(Y,X) :- (right to(X,Z), right to(Z,Y))).

Notice that, as shown above, the conjunctive body of the clause asserted should

be written in parenthesis.

A predicate newly introduced by assert/1 is deemed dynamic. An existing static (i.e. non-dynamic)
predicate may be augmented by a new clause via assert/1 only after declaring it dynamic.

• retractall/1 is used to remove from the database all clauses whose head unifies with the pattern in its
argument. As with retract/1 , retractall/1 may revoke dynamic predicates only.

Built-in Predicate: retractall(+Term)

Removes from the database all clauses whose head unifies with Term . For
example, both clauses of the predicate near/2 asserted earlier may be removed
in a single step by

?- retractall(near(,)).

Yes

3.1.2 Changing the Database

The following queries may be used to achieve the intended changes to the database.

• George leaves the table (Fig. 3.3).

?- dynamic(right to/2), right to(X,george),

right to(george,Y), assert(right to(X,Y)),

retract(right to(X,george)), retract(right to(george,Y)).

X = lisa

Y = clara

Yes

As is easily confirmed by the query ?- listing(right to/2). , the predicate right to/2 is now defined
in the database by the facts in (P-3.3).

2An interactive definition of a clause by assert/1 has the same effect as defining the same clause via consult(user) except
that in the latter case a newly defined predicate is static.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

81

Program Manipulations

�

�
�

�
�

Adam

Lisa

Susan

Clara

Martin

Figure 3.3: After George’s Departure

Prolog Code P-3.3: Updated definition of right to/2

1 right_to(martin, lisa). right_to(clara, adam).

2 right_to(adam, susan). right_to(susan, martin).

3 right_to(lisa, clara).

(Notice, however, that the definition of right to/2 in its Prolog source file is not yet affected.)

• Tracy and Joe join the table and are seated between Adam and Susan (Fig. 3.4).

?- right to(adam,X), retract(right to(adam,X)),

assert(right to(adam,tracy)), assert(right to(tracy,joe)),

assert(right to(joe,X)).

X = susan

Yes

Notice that due to the previous query the predicate right to/2 is now dynamic. It is now defined in the
database by the facts in (P-3.4).3

Prolog Code P-3.4: Final definition of right to/2

1 right_to(martin, lisa). right_to(clara, adam).

2 right_to(susan, martin). right_to(lisa, clara).

3 right_to(adam, tracy). right_to(tracy, joe).

4 right_to(joe, susan).

It is seen that assert/1 places the new clause behind the existing ones for the same predicate.4

3As before, we may confirm this by the query ?- listing(right to/2). .
4The related predicate asserta/1 (not used here) behaves exactly as assert/1 except that it places the new clause in front of

all existing ones for the same predicate.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

82

Program Manipulations

�
��

�
�

� �

Martin
Susan

Joe

Tracy
Adam

Lisa

Clara

Figure 3.4: After Tracy’s and Joe’s arrival

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Prolog Techniques

83

Program Manipulations

Exercise 3.3. Thus far, we have carried out (for reasons of transparency) database changes interactively
only. In this exercise, you are asked to define some predicates for manipulating the database.

(a) Define a predicate swap neighbours(+Left,+Right) for recording in the database of two neighbours
swapping places. (For this predicate to succeed, prior to the swap, the person named in Left should be
seated to the left of the person named in Right .) If we assume, for example, that the seating arrangement
is initially as shown in Fig. 3.1, then the swap of Clara and Adam will be accomplished by

?- swap neighbours(clara,adam).

Yes

After this, the database will look as follows.

right_to(martin, lisa). right_to(lisa, george).

right_to(susan, martin). right_to(adam, clara).

right_to(george, adam). right_to(clara, susan).

(b) Define a predicate swap(+Person1,+Person2) for recording in the database of two people swapping places
who need not be neighbours. To exemplify, assume again that the database is initially as shown in Fig. 3.1.
Then, Adam and George’s swap is carried out by

?- swap(adam,george).

Yes

upon which the database is as shown below.

right_to(martin, lisa). right_to(susan, martin).

right_to(adam, clara). right_to(lisa, adam).

right_to(george, susan). right_to(clara, george).

Note. You may use the predicate swap neighbours/2 from part (a) in your definition of swap/2 .

�

Exercise 3.4. (Modelling a queue)5 A queue with at least two customers at a checkout is modelled by
the Prolog predicate behind/2 which is defined in the file queue.pl as shown below. (behind/2 is declared a
dynamic predicate in queue.pl.)

behind(lisa,george). behind(george,clara). behind(clara,adam).

behind(adam,susan). behind(susan,peter).

(These facts have an obvious interpretation: the person named in the second argument stands behind the person
named in the first argument.)

(a) Define a predicate swap neighbours(+Person1,+Person2) for recording in the database of two neighbours
swapping places. (For this predicate to succeed, prior to the swap, the person named in Person2 should
be standing behind the person named in Person1 .) Example:

5The ideas involved here will be similar to those in Exercise 3.3 but now we have also to identify the first and the last person
in the queue.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

84

Program Manipulations

?- swap neighbours(clara,adam).

Yes

After this query, the database will look as follows. After this, the database will look as follows.

behind(lisa,george). behind(george,adam). behind(adam,clara).

behind(clara,susan). behind(susan,peter).

Hint. You should define swap neighbours(+Person1,+Person2) by four clauses, each of them covering
one of the cases indicated in the Table 3.1 where the two questions concerned are defined by

1. Is Person1 the first person in the queue? (Yes/No)

2. Is Person2 the last person in the queue? (Yes/No)

‘Yes’ to 1 and ‘Yes’ to 2 ‘Yes’ to 1 and ‘No’ to 2
‘No’ to 1 and ‘Yes’ to 2 ‘No’ to 1 and ‘No’ to 2

Table 3.1: Cases for swap neighbours/2

(b) (Queue jumping) Using swap neighbours/2 , now define by recursion a predicate to front(+P) for
recording in the database of person P moving to the front of the queue. Example:

?- to front(adam).

Yes

After this query, the database will look as follows.

behind(adam,lisa). behind(lisa,george). behind(george,clara).

behind(clara,susan). behind(susan,peter).

(c) Define by recursion a predicate before(+Person1,?Person2) for finding the names of all those who will
be served before Person1 . On backtracking, Person2 should be unified with the names of all those to be
served before Person1 . For example, assuming that the database is as given initially, we should find the
names of all customers to be served before Adam by the query:

?- before(adam,P).

P = clara ; P = george ; P = lisa ;

No

You will find the solution of this exercise in queue.pl.

�

Exercise 3.5. The predicate lives in/2 is defined by (P-3.5).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

85

Program Manipulations

Prolog Code P-3.5: Initial definition of lives in/2

1 lives_in(london, paul). lives_in(birmingham, adam).

2 lives_in(leeds, susan). lives_in(york, george).

3 lives_in(london, tracy). lives_in(birmingham, david).

4 lives_in(york, peter). lives_in(york, jane).

5 lives_in(leeds, joe). lives_in(london, jack).

They form part of an employer’s database concerning employees’ locations. Let us now assume that the London
branch and all its employees move to York due to relocation. Write a query which will change the Prolog
database accordingly. After issuing the query, lives in/2 is defined by (P-3.6).

Prolog Code P-3.6: Final definition of lives in/2

1 lives_in(birmingham, adam). lives_in(leeds, susan).

2 lives_in(york, george). lives_in(birmingham, david).

3 lives_in(york, peter). lives_in(york, jane).

4 lives_in(leeds, joe). lives_in(york, paul).

5 lives_in(york, tracy). lives_in(york, jack).

�

3.1.3 File Modifications

We may want to modify clauses in the Prolog source file(s) as a permanent record of the changes in the
database. With a view to doing this, we have distributed the Prolog source code to three separate files as
shown in Fig. 3.5. It is seen that the Prolog source proper (in arrange.pl) is separated from what could

:- consult([people, arrange]).

:- dynamic(right to/2).

��� ���
party.pl

right to(martin,lisa).

right to(lisa,george).

right to(george,clara).

right to(clara,adam).

right to(adam,susan).

right to(susan,martin).

people.pl6

leaves(Person) :-

report leaves(Person), !,

left to(Person,X),

right to(Person,Y),

assert(right to(X,Y)),

remove(Person),

write back.

...

arrange.pl

Figure 3.5: File Organization for the Round Table Example

be considered the input data (in people.pl). We hasten to add, though, that this separation is not necessary

6This is the initial state of people.pl. By the end of the Prolog session it will have changed to its updated version, Fig. 3.6.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

86

Program Manipulations

since, as said earlier, Prolog does not distinguish between ‘program’ and ‘data’. Separation of program and
data will prove expedient, however, since predicates whose definition is kept separate from the rest of the source
code are easier to manipulate. The masterfile party.pl comprises a mere two directives: the first one causes
the other two files to be consulted while the second one indicates that right to/2 is a dynamic predicate.

How shall we conclude the interactive session in Sect. 3.1.2 to make the changes in the database also to be
mirrored in the file people.pl? To do this, we issue the query

?- tell(’people.pl’), listing(right to/2), told.

Yes

after which people.pl will be as shown in Fig. 3.6.
To understand the above query, we note that

• listing/1 uses the current output stream.

• At the beginning of an interactive session, the current output stream is the screen.

• The current output stream can be directed to a file by using the built-in predicate tell(+Filename) .

• The current output stream can be redirected to the screen by the predicate told/0 .

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Prolog Techniques

87

Program Manipulations

right to(martin, lisa). right to(clara, adam). right to(susan, martin).

right to(lisa, clara). right to(adam, tracy). right to(tracy, joe).

right to(joe, susan).

Figure 3.6: The File people.pl after the Interactive Session

• If an existing file is used in the argument of tell/1 , it will be overwritten. Therefore, to avoid accidental
loss of Prolog source code, program and dynamic data are best kept in separate files.

3.1.4 Updating right to/2 and people.pl

The work done interactively before (database and file changes), is more conveniently performed by some dedi-
cated predicates leaves/1 and joins/3 . Their definition parallels the respective interactive session and can
be found in the file arrange.pl.

Exercise 3.6. joins/3 in arrange.pl does not allow for a guest to join the empty table. Define join/1
to make this possible. Example:

?- guests.

No

?- joins(fred).

fred has joined the table.

Yes

?- guests.

fred

Yes

�

3.1.5 Automated Saving of Selected Predicates

We may wish to save to a file all (or some) predicate definitions loaded in memory. This is easily accomplished in
a piecemeal fashion as indicated in Sect. 3.1.3. Such a ‘manual’ approach is, however, tedious and therefore an
automated solution is called for. save predicates to(+Filename,+Choice) , to be studied below, is designed
to do this task.

The collection of all predicates in memory at any given time comprises

• those explicitly loaded by consult/1 (or by one of its equivalents),

• some built-in predicates depending on prior usage in the same session.

We are interested here in the first group, the user-defined predicates. The predicate my predicate(?Functor/?Arity,?C
will name each of them with the respective number of clauses in ClauseCount :

?- my_predicate(Pred,ClauseCount).

Pred = my_predicate/2

ClauseCount = 1 ;

Pred = opposites/0

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

88

Program Manipulations

ClauseCount = 1 ;

Pred = right_to/2

ClauseCount = 6 ;

...

my predicate/2 will serve as an auxiliary for save predicates to/2 and it is defined in (P-3.7).

Prolog Code P-3.7: Definition of my predicate/2

1 my_predicate(Fun/Arity,ClauseCount) :-

2 current_predicate(Fun,Head),

3 not(predicate_property(Head,built_in)),

4 not(predicate_property(Head,imported_from(_))),

5 not(predicate_property(Head,foreign)),

6 predicate_property(Head,number_of_clauses(ClauseCount)),

7 functor(Head,Fun,Arity).

The built-in predicates current predicate/2 , predicate property/2 and functor/3 are used in this largely
self-documenting definition.7 The goals 2–4 in the body of my predicate/2 are designed to filter out names of
predicates which are not user-defined.

Embedding my predicate/2 into a failure driven loop (see p. 77) gives rise to (P-3.8), the first clause of
save predicates to/2 .

Prolog Code P-3.8: First clause of save predicates to/2

1 save_predicates_to(Filename,all) :- tell(Filename),

2 ((my_predicate(Fun/Arity,_),

3 Fun \= ’my_predicate’,

4 Fun \= ’save_predicates_to’,

5 listing(Fun/Arity),

6 fail); true),

7 told.

It will write to the specified file all user-defined predicates except its own and its auxiliary’s definition.8 Example:
After the query

?- save_predicates to(’committee.pl’,all).

the file committee.pl will be as indicated in Fig. 3.7. This copy of the database will be inferior to the original
source because of

(1) User-defined (usually mnemonic) variable names will be replaced by system-assigned ones (due to listing/1),
making the code less readable.

(2) Clause layout may be lost.

(3) Comments will be lost.

(4) The order of the predicates may be different.

7functor/3 is known from Sect. 2.2.1. Consult the SWI–manual [18] for detailed information on the other two predicates.
8This is a sensible design decision since these two definitions won’t usually be relevant to the broader context.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

89

Program Manipulations

opposites :- right to(A, B),

opposite to(A, C),

write(A),

write(’, ’),

write(C),

nl,

fail.

right to(martin, lisa).

right to(lisa, george).

...

Figure 3.7: The File committee.pl

(5) Directives will be lost.

While the first four of these shortcomings could be tolerated, there will be some manual work needed to rectify
the last one.

Another clause of save predicates to(+Filename,+Choice) will define the case when Choice unifies with
a list of entries of the form Functor/Arity ; for example, upon the query

?- save predicates to(’committee.pl’,[remove/1,left to/2]).

the file committee.pl should comprise the definitions of the specified predicates remove/1 and left to/2

(Fig. 3.8). We define the second clause of save predicates to/2 in (P-3.9) along the lines of (P-3.8) except

remove(A) :- retract(right to(A, B)),

retract(right to(C, A)).

left to(A, B) :- right to(B, A).

Figure 3.8: The File committee.pl

for the additional filtering with the built-in predicate member/2 .

Prolog Code P-3.9: Second clause of save predicates to/2

1 save_predicates_to(Filename,List) :- tell(Filename),

2 ((my_predicate(Fun/Arity,_),

3 member(Fun/Arity,List),

4 listing(Fun/Arity),

5 fail); true),

6 told.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

90

Program Manipulations

Built-in Predicate: member(?Elem,?List)

Succeeds when Elem unifies with one of the elements of List . Example:

?- member(penguin,[sparrow,stork,magpie]).

No

?- member(Bird,[sparrow,stork,magpie]).

Bird = sparrow ;

Bird = stork

Yes

Exercise 3.7. The above version of save predicates to/2 will silently skip all entries in the list argument
which do not refer to a predicate in the database. An improved version will recognize this and return an error
message:

?- save predicates to(’committee.pl’,[remove/1,left to/3]).

Error: some predicates not in the database

No

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Prolog Techniques

91

Program Manipulations

(This shows that there is no predicate left to/3 in the database.) Define such an enhanced version of
save predicates to/2 . It should not write anything to the file unless all list entries refer to existing user-
defined predicates. Hint. A rather concise solution is possible by using the built-in predicate ->/2 .9

�

Built-in Predicate: ->/2

The predicate ->/2 (written in the operator form) is used to define the condi-
tional statement. Syntax: (+Condition -> +Action ; +Alternative Action) .
A property buyer’s example:

?- member(Capital,[1,4,10]),

((member(Mortgage,[1,2,5]),Capital + Mortgage < 9) ->

(Capital + Mortgage > 4,member(Property,[cottage,house]));

member(Property,[mansion,villa])).

Capital = 4 Mortgage = 1 Property = cottage ;

Capital = 4 Mortgage = 1 Property = house ;

Capital = 10 Mortgage = G1170 Property = mansion ;

Capital = 10 Mortgage = G1170 Property = villa ;

No

Notice in particular that

• ->/2 fails if Condition succeeds and Action fails (Capital = 1).

• Once Condition succeeds it won’t be re-satisfied on backtracking. (No
move from Mortgage = 1 to Mortgage = 2 when Capital = 4.)

• ->/2 succeeds if Condition fails and Alternative Action can be proved
(Capital = 10).

3.1.6 Miniproject: Modelling a Stamp Collection

The solutions of the exercises in this section are in the source file stamps.pl save for Exercise 3.9 which is
solved in Appendix A.3.

A stamp collection is modelled by the predicate album/1 in (P-3.10).

9This corresponds to the if–then–else language construct familiar from imperative programming. (Observe though the Prolog-
specific subtleties as exemplified in the inset.)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

92

Program Manipulations

Prolog Code P-3.10: Facts defining album/1

1 album([stamp(’Britain’,’Queen’,1965,20),

2 stamp(’Britain’,’Queen’,1967,50),

3 stamp(’Britain’,’Queen’,1963,120)]).

4 album([stamp(’Britain’,’Poets’,1978,19),

5 stamp(’Britain’,’Poets’,1979,20),

6 stamp(’Britain’,’Poets’,1978,22),

7 stamp(’Britain’,’Poets’,1977,40),

8 stamp(’Britain’,’Poets’,1978,100)]).

9 album([stamp(’Germany’,’Kaiser’,1882,5),

10 stamp(’Germany’,’Kaiser’,1879,20),

11 stamp(’Germany’,’Kaiser’,1885,50)]).

12 album([stamp(’Germany’,’Castles’,1885,10),

13 stamp(’Germany’,’Castles’,1879,50),

14 stamp(’Germany’,’Castles’,1885,60)]).

The arguments in stamp/4 refer respectively to: country of origin, the set’s name, year of issue, denomination.
Within a set, the stamps are in ascending order of denomination.

Exercise 3.8. (Pattern matching) Define a predicate collection/1 for displaying on the terminal all
stamps conforming to a certain criterion. Examples:

• Show all stamps with denomination 50.

?- collection(stamp(, , ,50)).

stamp(Britain, Queen, 1967, 50)

stamp(Germany, Kaiser, 1885, 50)

stamp(Germany, Castles, 1879, 50)

Yes

• Show all stamps from the set Castles.

?- collection(stamp(,’Castles’, ,)).

stamp(Germany, Castles, 1885, 10)

stamp(Germany, Castles, 1879, 50)

stamp(Germany, Castles, 1885, 60)

Yes

• Show all stamps issued between 1875 and 1883.

?- between(1875,1883,Y), collection(stamp(, ,Y,)), fail.

stamp(Germany, Kaiser, 1879, 20)

stamp(Germany, Castles, 1879, 50)

stamp(Germany, Kaiser, 1882, 5)

No

�

Exercise 3.9. Assume that the stamp collector wants to sell the German Kaiser set of stamps. Construct
a Prolog query to achieve the corresponding database modification interactively.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

93

Program Manipulations

�

Exercise 3.10. (This is a task in preparation for Exercise 3.11.) Define a predicate remove all/3 for
removing all entries from a list which match a given pattern. Example:

?- remove all(item(,5),

[item(6,9),item(1,5),item(7,1),item(9,5)],L).

L = [item(6, 9), item(7, 1)]

(The original order is retained in the third argument of remove all/3 .)

�

Exercise 3.11. Use remove all/3 from Exercise 3.10 to define sell/1 for removing from the database all
stamps conforming to a given criterion. For example, all British stamps from the set Poets issued in 1978 may
be removed interactively thus

?- sell(stamp(’Britain’,’Poets’,1978,)).

Yes

?- collection(stamp(,’Poets’, ,)).

stamp(Britain, Poets, 1979, 20)

stamp(Britain, Poets, 1977, 40)

Yes

�

Exercise 3.12. Define insert/3 for inserting into a list of stamps a new stamp. Requirements:

• The new stamp has to be positioned according to its denomination.

• The new stamp has to fit into the existing set supplied in the second argument of insert/3 .

(Notice that insert/3 won’t affect the database.) Examples:

?- insert(stamp(’Britain’,’Flowers’,2001,70),

[stamp(’Britain’,’Flowers’,2000,40),

stamp(’Britain’,’Flowers’,2000,60),

stamp(’Britain’,’Flowers’,1991,100)],L).

L = [stamp(’Britain’, ’Flowers’, 2000, 40),

stamp(’Britain’, ’Flowers’, 2000, 60),

stamp(’Britain’, ’Flowers’, 2001, 70),

stamp(’Britain’, ’Flowers’, 1991, 100)]

Yes

?- insert(stamp(’Britain’,’Sports’,2001,70),

[stamp(’Britain’,’Flowers’,2000,40),

stamp(’Britain’,’Flowers’,2000,60),

stamp(’Britain’,’Flowers’,1991,100)],L).

No

(A concise recursive solution is sought.)

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

94

Program Manipulations

Exercise 3.13. Define buy/1 for including a new stamp into the database. If the new stamp fits into an
existing set, it should be included in there. Otherwise, a new set should be created with just this new stamp in
it. For example, the 25 Pence stamp from the 1966 issue of the Queen set may be included in the database by

?- buy(stamp(’Britain’,’Queen’,1966,25)).

Yes

?- collection(stamp(,’Queen’, ,)).

stamp(Britain, Queen, 1965, 20)

stamp(Britain, Queen, 1966, 25)

stamp(Britain, Queen, 1967, 50)

stamp(Britain, Queen, 1963, 120)

Yes

And, record the purchase of the 50 Öre stamp from the 1956 issue of the Swedish Nobel Laureates set by

?- buy(stamp(’Sweden’,’Nobel Laureates’,1956,50)).

Yes

?- collection(stamp(’Sweden’, , ,)).

stamp(Sweden, Nobel Laureates, 1956, 50)

Yes

�

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Prolog Techniques

95

Program Manipulations

3.2 Case Study: Automated Unfolding

We have introduced in Sect. 2.3.1 the program transformation technique unfolding and saw by way of an example
that it can enhance a program’s performance. There, the transformation was carried out essentially ‘manually’
though with some assistance (for unification) from the Prolog system. We now want to examine an automated
tool for unfolding, written in Prolog. Figs. 3.9–3.10 (pp. 97–98) show an annotated session for solving by this
tool the example from Sect. 2.3.1 interactively.

The tool comprises the predicates elementary unfolding/5 , unfold/3 and clause arrange/2 , the first
two of which are implementations of Elementary and Complete One Step Unfolding, respectively. The mean-
ing and use of their arguments is easily gleaned from the sample sessions. The third of these predicates,
clause arrange/2 , is used to retain in the Prolog database a specified set of clauses of a predicate as indicated
by the clause numbers in the second (list) argument. It thereby allows redundant clauses to be discarded and
the others be sorted as deemed necessary.

The steps involved in implementing elementary Unfolding and Complete One Step Unfolding will be demon-
strated with reference to the definitions of some predicates a/5 and c/2 shown respectively in (P-3.11) and
(P-3.12).

Prolog Code P-3.11: Definition of a/5

1 a(U,U,U,U,U).

2 a(U,V,U,V,U) :- m(U,V).

3 a(U,V,W,V,U) :- n(U,n(V,W)), b(U,V), e(V,U).

4 a(U,V,W,X,Y) :- b(U,V), c(V,W), d(W,X), e(X,Y).

Prolog Code P-3.12: Definition of c/2

1 c(A,B) :- f(A), m(A,B).

2 c(A,B) :- A is B + 1.

3 c(A,A) :- f(A), g(A).

3.2.1 Elementary Unfolding

Let us unfold goal 2 in clause 4 of a/5 by using clause 3 of c/2 :

?- elementary unfolding(a/5,4,2,c/2,3).

Yes

Thereafter the database will contain an additional clause for a/5 :

?- listing(a/5).

...

a(A, B, B, C, D) :- b(A, B), f(B), g(B), d(B, C), e(C, D).

Yes

We show a series of queries in Figs. 3.11–3.14 (pp. 99–101) to illustrate the idea behind the definition of
elementary unfolding/5 .

The following observations on these figures are in order.

• Fig. 3.11: The query comprises three phases.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

96

Program Manipulations

1. The built-in predicates functor/3 , nth clause/3 and clause/3 are used to split up the fourth
clause of a/5 into its building blocks: in particular, Body1 is unified with a term which is the
conjunction of the clause’s goals. (For nth clause/3 and clause/3 , see inset on p. 102.)

2. The user-defined predicate conj/2 then returns the list of conjuncts of Body1 in L1 .

3. Finally, the user-defined predicate splitlist/5 is used to disassemble the list of conjuncts L1 around
its second entry into three parts. Notice in particular that Entry1 is unified with the goal to be
unfolded later.

• Fig. 3.12: Here we disassemble the third clause of c/2 in a similar manner to steps 1 and 2 above.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

97

Program Manipulations

�

�

�

�

?- [dl,transformations].

% dl compiled 0.11 sec, 18,044 bytes

% transformations compiled 0.06 sec, 9,224 bytes

Yes

?- listing(rev dl/2).

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([A], E-D).

Yes

?- unfold(rev dl/2,3,2).

Clause(s) used:

Clause 2 of predicate rev dl/2

Clause 3 of predicate rev dl/2

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([A], E-D).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]),

true.

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([], E-F),

rev dl([A], F-D).

Clause removed:

Clause 3 of predicate rev dl/2

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]),

true.

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([], E-F),

rev dl([A], F-D).

Yes

?- clause arrange(rev dl/2,[1,3]).

Yes

?- listing(rev dl/2).

rev dl([], A-A).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]),

true.

Yes

⎫⎪⎪⎬
⎪⎪⎭

Predicate to be

transformed

� ︸︷︷︸
� COSU on goal 2 of clause 3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Replacing, new

clauses

}
Clause to be

replaced

�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Clauses of

rev dl/2 after

a COSU

Redundant

clause; see

Fig. 3.10}

Redundant

clause; see

Sect. 2.3.1

⎫⎬
⎭

Retain clauses

1 and 3 only

}

New definition

of rev dl/2

⎫⎬
⎭

Figure 3.9: Interactive Prolog–Assisted Program Transformation: Session I

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

98

Program Manipulations

�

�

�

�

?- consult(user).

|: :- consult(transformations).

% transformations compiled 0.06 sec, 9,584 bytes

|: rev dl([],L-L).

|: rev dl([H|T],L1-L2) :- rev dl(T,L1-[H|L2]).

|:
	
 ��Ctrl +

	
 ��Z

% user compiled 86.18 sec, 10,128 bytes

Yes

?- elementary unfolding(rev dl/2,2,1,rev dl/2,1).

Yes

?- listing(rev dl/2).

rev dl([], A-A).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]).

rev dl([A], [A|B]-B).

Yes

⎫⎬
⎭ Manual input

of rev dl/2

} Unfold on

goal 1 of

clause 2 using

clause 1

}
Old clauses
}
New clause

Figure 3.10: Interactive Prolog–Assisted Program Transformation: Session II

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

99

Program Manipulations

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
1
,
a
,
5
)
,

n
t
h
c
l
a
u
s
e
(
P
r
e
d
1
,
4
,
R
e
f
1
)
,

c
l
a
u
s
e
(
H
e
a
d
1
,
B
o
d
y
1
,
R
e
f
1
)
,

c
o
n
j
(
B
o
d
y
1
,
L
1
)
,

s
p
l
i
t
l
i
s
t
(
2
,
L
1
,
F
r
o
n
t
1
,
E
n
t
r
y
1
,
B
e
h
i
n
d
1
)
.

P
r
e
d
1

=
a
(
G
1
1
2
3
,

G
1
1
2
4
,

G
1
1
2
5
,

G
1
1
2
6
,

G
1
1
2
7
)

R
e
f
1

=
1
7
9
4
7
3
1

H
e
a
d
1

=
a
(
G
1
1
3
2
,

G
1
1
3
3
,

G
1
1
3
4
,

G
1
1
3
5
,

G
1
1
3
6
)

B
o
d
y
1

=
b
(
G
1
1
3
2
,

G
1
1
3
3
)
,

c
(
G
1
1
3
3
,

G
1
1
3
4
)
,

d
(
G
1
1
3
4
,

G
1
1
3
5
)
,

e
(
G
1
1
3
5
,

G
1
1
3
6
)

L
1

=
[
b
(
G
1
1
3
2
,

G
1
1
3
3
)
,

c
(
G
1
1
3
3
,

G
1
1
3
4
)
,

d
(
G
1
1
3
4
,

G
1
1
3
5
)
,

e
(
G
1
1
3
5
,

G
1
1
3
6
)
]

F
r
o
n
t
1

=
[
b
(
G
1
1
3
2
,

G
1
1
3
3
)
]

E
n
t
r
y
1

=
c
(
G
1
1
3
3
,

G
1
1
3
4
)

B
e
h
i
n
d
1

=
[
d
(
G
1
1
3
4
,

G
1
1
3
5
)
,

e
(
G
1
1
3
5
,

G
1
1
3
6
)
]

Y
e
s

F
ig

u
re

3
.1

1
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
1
:

D
is

a
ss

em
b
li
n
g

cl
a
u
se

4
o
f
a
/
5

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
2
,
c
,
2
)
,

n
t
h
c
l
a
u
s
e
(
P
r
e
d
2
,
3
,
R
e
f
2
)
,

c
l
a
u
s
e
(
H
e
a
d
2
,
B
o
d
y
2
,
R
e
f
2
)
,

c
o
n
j
(
B
o
d
y
2
,
L
2
)
.

P
r
e
d
2

=
c
(
G
8
2
0
,
G
8
2
1
)

R
e
f
2

=
1
7
9
4
8
7
7

H
e
a
d
2

=
c
(
G
8
2
6
,
G
8
2
6
)

B
o
d
y
2

=
f
(
G
8
2
6
)
,
g
(
G
8
2
6
)

L
2

=
[
f
(
G
8
2
6
)
,
g
(
G
8
2
6
)
]

Y
e
s

F
ig

u
re

3
.1

2
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
2
:

D
is

a
ss

em
b
li
n
g

cl
a
u
se

3
o
f
c
/
2

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

100

Program Manipulations

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
1
,
a
,
5
)
,

.
.
.
,

f
u
n
c
t
o
r
(
P
r
e
d
2
,
c
,
2
)
,

.
.
.
,

H
e
a
d
2

=
E
n
t
r
y
1
.

P
r
e
d
1

=
a
(
G
1
9
0
8
,

G
1
9
0
9
,

G
1
9
1
0
,

G
1
9
1
1
,

G
1
9
1
2
)

R
e
f
1

=
1
7
9
4
7
3
1

H
e
a
d
1

=
a
(
G
1
9
1
7
,

G
1
9
1
8
,

G
1
9
1
8
,

G
1
9
2
0
,

G
1
9
2
1
)

B
o
d
y
1

=
b
(
G
1
9
1
7
,

G
1
9
1
8
)
,

c
(
G
1
9
1
8
,

G
1
9
1
8
)
,

d
(
G
1
9
1
8
,

G
1
9
2
0
)
,

e
(
G
1
9
2
0
,

G
1
9
2
1
)

L
1

=
[
b
(
G
1
9
1
7
,

G
1
9
1
8
)
,

c
(
G
1
9
1
8
,

G
1
9
1
8
)
,

d
(
G
1
9
1
8
,

G
1
9
2
0
)
,

e
(
G
1
9
2
0
,

G
1
9
2
1
)
]

F
r
o
n
t
1

=
[
b
(
G
1
9
1
7
,

G
1
9
1
8
)
]

E
n
t
r
y
1

=
c
(
G
1
9
1
8
,

G
1
9
1
8
)

B
e
h
i
n
d
1

=
[
d
(
G
1
9
1
8
,

G
1
9
2
0
)
,

e
(
G
1
9
2
0
,

G
1
9
2
1
)
]

P
r
e
d
2

=
c
(
G
1
9
8
8
,

G
1
9
8
9
)

R
e
f
2

=
1
7
9
4
8
7
7

H
e
a
d
2

=
c
(
G
1
9
1
8
,

G
1
9
1
8
)

B
o
d
y
2

=
f
(
G
1
9
1
8
)
,

g
(
G
1
9
1
8
)

L
2

=
[
f
(
G
1
9
1
8
)
,

g
(
G
1
9
1
8
)
]

Y
e
s

F
ig

u
re

3
.1

3
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
3
:

E
x
p
er

im
en

ts
1

&
2

fo
ll
ow

ed
b
y

a
p
p
ro

p
ri

a
te

u
n
ifi

ca
ti
o
n

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

101

Program Manipulations

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
1
,
a
,
5
)
,

.
.
.
,

f
u
n
c
t
o
r
(
P
r
e
d
2
,
c
,
2
)
,

.
.
.
,

H
e
a
d
2

=
E
n
t
r
y
1
,

c
o
n
c
a
t
3
(
F
r
o
n
t
1
,
L
2
,
B
e
h
i
n
d
1
,
L
)
,

c
o
n
j
(
N
e
w
B
o
d
y
,
L
)
,

d
y
n
a
m
i
c
(
a
/
5
)
,

a
s
s
e
r
t
(
H
e
a
d
1

:
-
N
e
w
B
o
d
y
)
.

P
r
e
d
1

=
a
(
G
2
5
3
4
,

G
2
5
3
5
,

G
2
5
3
6
,

G
2
5
3
7
,

G
2
5
3
8
)

R
e
f
1

=
1
7
9
4
7
3
1

H
e
a
d
1

=
a
(
G
2
5
4
3
,

G
2
5
4
4
,

G
2
5
4
4
,

G
2
5
4
6
,

G
2
5
4
7
)

B
o
d
y
1

=
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

c
(
G
2
5
4
4
,

G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)

L
1

=
[
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

c
(
G
2
5
4
4
,

G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)
]

F
r
o
n
t
1

=
[
b
(
G
2
5
4
3
,

G
2
5
4
4
)
]

E
n
t
r
y
1

=
c
(
G
2
5
4
4
,

G
2
5
4
4
)

B
e
h
i
n
d
1

=
[
d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)
]

P
r
e
d
2

=
c
(
G
2
6
1
4
,

G
2
6
1
5
)

R
e
f
2

=
1
7
9
4
8
7
7

H
e
a
d
2

=
c
(
G
2
5
4
4
,

G
2
5
4
4
)

B
o
d
y
2

=
f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)

L
2

=
[
f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)
]

L
=
[
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)
]

N
e
w
B
o
d
y

=
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)

Y
e
s

?
-

l
i
s
t
i
n
g
(
a
/
5
)
.

.
.
.

a
(
A
,

B
,

B
,

C
,
D
)

:
-

b
(
A
,

B
)
,

f
(
B
)
,

g
(
B
)
,

d
(
B
,

C
)
,
e
(
C
,

D
)
.

Y
e
s

F
ig

u
re

3
.1

4
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
4
:

E
x
p
er

im
en

t
3

fo
ll
ow

ed
b
y

n
ew

cl
a
u
se

cr
ea

ti
o
n

a
n
d

d
a
ta

b
a
se

u
p
d
a
te

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

102

Program Manipulations

Built-in Predicates: nth clause/3 and clause/3

nth clause(+Pred,+Index,?Ref) is used to assign a system–chosen reference
to a specific clause of a predicate. This reference may be used subsequently to
retrieve head and body of the clause by clause/3 . Example: Head and body
of the second clause of the predicate c/2 , defined by

c(A,B) :- f(A), m(A,B).

c(A,B) :- A is B + 1.

c(A,A) :- f(A), g(A).

may be retrieved by

?- nth clause(c(,),2,Ref), clause(Head,Body,Ref).

Ref = 1791614

Head = c(G542, G543)

Body = G542 is G543+1

If used with the instantiation pattern nth clause(+Pred,-Index,-Ref) , on
backtracking the references to all clauses of a given predicate are obtained:

?- nth clause(c(,),Index,Ref).

Index = 1 Ref = 1791577 ;

Index = 2 Ref = 1791614 ;

Index = 3 Ref = 1791649 ;

No

• Fig. 3.13: The previous two steps are repeated and then Head2 is unified with Entry1 , essentially
completing the unfolding operation. Notice in particular that the effect of unifying Head2 with Entry1

‘ripples through’ to all other variables: for example, as expected, in Head1 the second and third arguments
become identical while this was not the case before unification (see Fig. 3.11).

• Fig. 3.14: Subsequent to the steps above, we first assemble in L the list of goals for the new clause; we
use here the (fairly straightforward) user-defined predicate concat3/4 . Then, conj/2 is used again (now
in the ‘reverse’ direction) to create the term NewBody , the conjunction of terms in L . Finally, the new
clause is written to the database, confirmed also by the next query using listing/1 .

The definition of elementary unfolding/5 in transformations.pl follows the query shown in Fig. 3.14. The
auxiliary predicates used therein won’t be discussed here; the way conjunctions are composed/decomposed by
conj/2 is noteworthy, however. This is accomplished within conj/2 via the auxiliaries conjunction(+List,+Acc,-Term)
and conjuncts(+Term,+Acc,-List)
whose working is illustrated below.

?- conjunction([t(X),u(Y,a),v(b,X)],s(Y),C), conjuncts(C,[],L).

X = G492

Y = G497

C = v(b, G492), u(_G497, a), t(G492), s(G497)

L = [s(G497), t(G492), u(G497, a), v(b, G492)]

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

103

Program Manipulations

They are defined in (P-3.13) and (P-3.14) by the accumulator technique.10

Prolog Code P-3.13: Definition of conjunction/3

1 conjunction([],Conj,Conj).

2 conjunction([H|T],Acc,Conj) :- conjunction(T,(H,Acc),Conj).

10In (P-3.14) we implicitly use the fact that Prolog’s conjunction is right-associative. The two queries below thus generate the
same response:

?- conjuncts((v(b,X), u(Y, a), t(X), s(Y)),[],L).

X = G409 Y = G411

L = [s(G411), t(G409), u(G411, a), v(b, G409)]

?- conjuncts((v(b,X), (u(Y, a), (t(X), s(Y)))),[],L).

X = G433 Y = G435

L = [s(G435), t(G433), u(G435, a), v(b, G433)]

What will Prolog’s response be to the query below?

?- conjuncts((((v(b,X), u(Y, a)), t(X)), s(Y)),[],L).

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

104

Program Manipulations

Prolog Code P-3.14: Definition of conjuncts/3

1 conjuncts(Term,Acc,[Term|Acc]) :- not(functor(Term,’,’,2)).

2 conjuncts(Term,Acc,L) :- functor(Term,’,’,2),

3 arg(1,Term,Term1),

4 arg(2,Term,Term2),

5 conjuncts(Term2,[Term1|Acc],L).

3.2.2 Complete One Step Unfolding

Let us now assume that we want to unfold clause 4 of a/5 on its second goal. We can do this by repeatedly
using elementary unfolding/5 in an obvious manner:

?- elementary unfolding(a/5,4,2,c/2,K).

K = 1 ; K = 2 ; K = 3 ;

No

?- listing(a/5).

a(A, A, A, A, A).

a(A, B, A, B, A) :- m(A, B).

a(A, B, C, B, A) :- n(A, n(B, C)), b(A, B), e(B, A).

a(A, B, C, D, E) :- b(A, B), c(B, C), d(C, D), e(D, E).

a(A, B, C, D, E) :- b(A, B), f(B), m(B, C), d(C, D), e(D, E).

a(A, B, C, D, E) :- b(A, B), B is C+1, d(C, D), e(D, E).

a(A, B, B, C, D) :- b(A, B), f(B), g(B), d(B, C), e(C, D).

In doing so, the following steps have been carried out:

1. We have visually identified c(V,W) as goal 2 in clause 4 of a/5 .

2. We have attempted (and successfully completed) by backtracking an elementary unfolding operation with
each of the clauses of c/2 .

To complete the task, we would also need to

3. Remove clause 4 of a/5 from the database.

Step 2 is more concisely implemented by a failure driven loop thus

?- elementary unfolding(a/5,4,2,c/2,K), fail.

No

Within the same failure driven loop we may integrate Step 1 by attempting an elementary unfolding operation
with each predicate in the database. The generation of all predicates may be accomplished by11

?- current predicate(Fun,Head),

not(predicate property(Head,built_in)),

not(predicate property(Head,imported from())),

not(predicate property(Head,foreign)),

functor(Head,Fun,Arity).

11The same functionality (i.e. retrieval from the database of all user-defined predicates) is achieved by the almost identical
predicate my predicate/2 from p. 88.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

105

Program Manipulations

Fun = a

Head = a(G1380, G1381, G1382, G1383, G1384)

Arity = 5 ;

...

Fun = c

Head = c(_G1380, _G1381)

Arity = 2 ;

...

Embedding this within the earlier failure driven loop will essentially implement unfold/3 :

?- current predicate(Fun,Head),

not(predicate property(Head,built in)),

not(predicate property(Head,imported from())),

not(predicate property(Head,foreign)),

functor(Head,Fun,Arity),

elementary unfolding(a/5,4,2,Fun/Arity,K), fail.

No

For further details on the definition of unfold/3 the reader is referred to the file transformations.pl. (Note-
worthy is perhaps the use in Step 3 of the built-in predicate erase/1 .)

Built-in Predicate: erase(+Ref)

erase(+Ref) removes the clause with reference Ref from the database. Exam-
ple:

?- dynamic(num/1), ((member(I,[1,2,3]), assert(num(I)),

fail); true), listing(num/1).

num(1).

num(2).

num(3).

?- nth clause(num(),2,Ref), erase(Ref), listing(num/1).

num(1).

num(3).

Ref = 3904727

Exercise 3.14. Use the predicate unfold/3 to solve Exercise 2.9, Part (c).

�

Self-unfolding

There may seem a subtle problem with our implementation of unfold/3 which we want to address now.
In the definition of unfold/3 we write (within a failure driven loop) to the database new clauses via

elementary unfolding/5 which itself ‘feeds on’ clauses (in its fourth argument) that are retrieved from the
database. This construction could conceivably give rise to an infinite loop in the case of what was termed
‘self-unfolding’ in Sect. 2.3.1, p. 52. This cannot happen, however, since a search tree under consideration by
Prolog won’t be affected by database changes created by the search itself. The following simple interactive
session illustrates this point.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

106

Program Manipulations

?- listing(num/1).

num(1).

Yes

?- num(X), Y is 2 * X, assert(num(Y)), fail.

No

?- listing(num/1).

num(1).

num(2).

Yes

Had the search tree been affected by the database changes immediately we would have expected in the database
infinitely many clauses of num/1 like

num(1). num(2). num(4). ...

The session shown in Fig. 3.9 (involving self-unfolding of the predicate rev dl/2) confirms indeed that unfold/3
does not cause looping.

3.2.3 Rearranging Clauses

Clauses of a predicate may be rearranged by clause arrange/2 as illustrated in Fig. 3.9. To this end, the
following auxiliary predicates have been defined:

• all clauses/2 collects all clauses of a predicate into a list of terms. Example:

?- all clauses(c/2,L).

L = [(c(G368, G369) :- f(G368), m(G368, G369)),

(c(G350, G351) :- G350 is G351+1),

(c(G331, G331) :- f(G331), g(G331))]

all clauses/2 is defined by

all_clauses(Fun/Arity,List) :-

functor(Pred,Fun,Arity),

findall((Head :- Body),

(nth_clause(Pred,_,Ref),

clause(Head,Body,Ref)), List).

• arrange/3 selects (a subset of) the entries of list as specified by a list of integers in the first argument.
Example:

?- arrange([4,3,5],[a,b,c,d,e,f],L).

L = [d, c, e]

arrange/3 is defined by

arrange(IntList,InL,OutL) :-

findall(E,(member(M,IntList), nth1(M,InL,E)),OutL).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

107

Program Manipulations

Built-in Predicate: nth1(?Index,?List,?Elem)

nth1/3 is used to select a specified entry from a list. Example:

?- nth1(3,[a,b,c,d,e,f],E).

E = c

The definition of clause arrange/2 in terms of the two auxiliaries is fairly straightforward; see the file
transformations.pl for details.

Exercise 3.15. Use the predicate unfold/3 to carry out a Complete One Step Unfolding on an appropri-
ately chosen goal in one of the clauses of flatten dl/2 from Sect. 2.2.3. After some removal and rearranging
of clauses via clause arrange/2 , you should arrive at a version of flatten/2 which is more efficient than the
earlier ones. Demonstrate the gain in speed by an experiment akin to the one carried out in Exercise 2.7.

�

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Prolog Techniques

108

Program Manipulations

Exercise 3.16. You will have seen in Exercise 3.15 that unfold/3 places the new clauses after the existing
ones. To observe the original order, the new clauses had to be subsequently moved by clause arrange/2 to
the position of the clause they were replacing. Write a predicate cosu/3 which performs a Complete One
Step Unfolding and then restores the predicates’ order.12 For example, the suggested solution of Exercise 3.15
(p. 162) could then be achieved simply by

?- cosu(flatten dl/2,2,2).

...

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl([A|B], C-D) :- flatten dl(A, C-[B|D]),

true.

flatten dl(A, [A|B]-B).

Note. When using clause arrange/2 , you will have to be able to generate integer lists with specified bounds.
The built-in predicate between/3 may be used to achieve this.

�

3.3 Dijkstra’s Dutch Flag Problem Revisited

3.3.1 Problem Generalization and First Solution

Dijkstra’s Dutch Flag Problem from Sect. 2.4 may be generalized as follows:

• The items may be of any colour and any number of colours may occur.

• The items are to be grouped to a certain order of colours as specified by the user in some list Colours .
This list need not include all the items’ colours and may include colours not assigned to any of the items.
As before, within each colour group the items’ original order should be retained.

We call the predicate to be defined dijkstra(+Colours,+Items,-Grouped) and illustrate its desired behaviour
by an example. Take the list of items

new_items([col(soot,black), col(tomato,red), col(nut,brown),

col(milk,white), col(snow,white), col(coal,black),

col(bile,green), col(bark,brown), col(ocean,blue),

col(grass,green), col(apple,red), col(blood,red),

col(night,black), col(sky,blue)]).

12To retrieve the number of clauses of a predicate, you should use the built-in predicate predicate property/2 in the form
predicate property(+Pred,number of clauses(-ClauseNumber)) .

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

109

Program Manipulations

and sort it in the order black, blue, violet, green, red and white. (Notice that brown is not one of the colours
listed here, nor is there any item whose colour is violet.) The expected behaviour of dijkstra/3 is as follows.13

?- new items(Items),

dijkstra([black,blue,violet,green,red,white], Items,Grouped).

Grouped = [col(soot,black), col(coal,black), col(night,black),

col(ocean,blue), col(sky,blue), col(bile,green),

col(grass,green), col(tomato,red), col(apple,red),

col(blood,red), col(milk,white), col(snow,white)]

dijkstra/3 solves the original Dutch Flag problem from Sect. 2.4 if its first argument is unified with [red,

white, blue].
On inspection of dijkstra/2 from Sect. 2.4.3 (the version based on difference lists) it is seen that the

current, specific problem would be solved by dijkstra/2 if dijkstra dl/2 had been defined by the clause

dijkstra_dl(Items,L1-L7) :- colour_dl(black,Items,L1-L2),

colour_dl(blue,Items,L2-L3),

colour_dl(violet,Items,L3-L4),

colour_dl(green,Items,L4-L5),

colour_dl(red,Items,L5-L6),

colour_dl(white,Items,L6-L7).

This suggests introducing a predicate replace dijkstra dl(+Colours) for replacing the existing definition of
dijkstra dl/2 in the database by the desired one. Then, dijkstra/3 may be defined in terms of the old
version of dijkstra/2 thus

dijkstra(Colours,Items,List) :- replace_dijkstra_dl(Colours),

dijkstra(Items,List).

Let us now look at in detail how the change in the database is accomplished.

replace_dijkstra_dl(Colours) :-

dynamic(dijkstra_dl/2), % goal 1

retractall(dijkstra_dl(_,_)), % goal 2

conjuncts(Items,Colours,L,First,Last), % goal 3

conj(Body,L), % goal 4

assert(dijkstra_dl(Items,First-Last) :- Body). % goal 5

The first two goals are obvious: dijkstra dl/2 is made a dynamic predicate and then its existing definition is
removed from the database. The rôle of conjuncts/5 is best illustrated by a sample query.

?- conjuncts(Items,[red,white,green],L,First,Last).

Items = G399

L = [colour dl(red, G399, G402- G513),

colour dl(white, G399, G513- G514),

colour dl(green, G399, G514- G403)]

First = G402

Last = G403

13We note in passing that the default maximum number of entries of a list displayed on the terminal by SWI–Prolog is ten. For
a full display of the twelve-entry list Grouped , we issue the prior query

?- set prolog flag(toplevel print options,[max depth(20)]).

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

110

Program Manipulations

Here, L is unified with the list of terms whose conjunction will form the body of the clause for dijkstra dl/2 .
The variables First , Last and Items will be used in goal 5 as variables in the head of the clause for
dijkstra dl/2 . We won’t spell out the definition of conjuncts/5 here but consider some salient points only.
The list of terms in the third argument is created by an auxiliary predicate using the accumulator technique;
see the source code for details. Perhaps the most imminent question here is how to get hold of an unspecified
number of variable names.14 This is accomplished by vars/2 ,

?- vars(5,V).

V = [G239, G240, G241, G242, G243]

which may be defined as shown below.15

vars(N,Vars) :- functor(Term,dummy,N),

bagof(Var,Arg^arg(Arg,Term,Var),Vars).

The requisite number of variables is generated by the built-in predicate functor/3 , as in

?- functor(Term,dummy,5).

Term = dummy(G313, G314, G315, G316, G317)

subsequent to which bagof/3 is used to collect the variables in a list. In goal 4, we use conj/2 (which is known
from Sect. 3.2.1, p. 102) to unify with Body the conjunction of terms for the body of the clause to be created.
Finally, in goal 5 the clause is written to the database.

Exercise 3.17. Use dijkstra/3 to define dijkstra st(+Items,-Grouped) for returning in Grouped the
entries of Items such that

• All entries of Items feature in Grouped ;

• The colours are sorted in alphabetical order;

• And, as before, within each colour group, the items’ original order is retained.

Example:

?- items(Items), dijkstra st(Items,Grouped).

Grouped = [col(sky, blue), col(ocean, blue), col(tomato, red),

col(blood, red), col(cherry, red), col(milk, white),

col(snow, white)]

�

14Only at runtime will it be known how many colours conjuncts/5 holds in its second argument!
15 There are at least two other alternatives for defining vars/2 . The simplest is by using the built-in predicate length/2 :

?- length(Vars,5).

Vars = [G251, G254, G257, G260, G263]

The second one is based on the built-in predicate =../2 (univ) for assembling and disassembling terms. The idea for this
implementation of vars/2 should be clear from the query below.

?- functor(Term,dummy,5), Term =.. [|Vars].

Term = dummy(G478, G479, G480, G481, G482)

Vars = [G478, G479, G480, G481, G482]

(The predicates functor/3 , arg/3 and univ will be familiar from Sect. 2.2.1.)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

111

Program Manipulations

3.3.2 Enhanced Implementations

The predicate dijkstra(+Colours,+Items,-Grouped) from Sect. 3.3.1 is inefficient inasmuch as it will require
as many passes through Items as there are entries in Colours . We have seen implementations for the original
Dutch Flag Problem in Exercise 2.10, requiring a single pass only through the input list Items . In this section,
those versions will be enhanced for solving the problem’s more general formulation.

As in Sect. 3.3.1 before, we want to glean the plan for solving the general problem by considering a specific
example. Let us assume that Colours is the list [black,white,red,green] . Then, it is easily seen that
the plan for the solution of Exercise 2.10 (pp. 152–153) still applies if colour dl/4 and dijkstra dl/2 are
respectively replaced by the predicates encolour dl/5 and endijkstra dl/2 as shown in Fig. 3.15. Clearly,

encolour dl([],B-B,W-W,R-R,G-G).

encolour dl([col(Object,black)|T],

[col(Object,black)|B1]-B2,W1-W2,R1-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(Object,white)|T],

B1-B2,[col(Object,white)|W1]-W2,R1-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(Object,red)|T],

B1-B2,W1-W2,[col(Object,red)|R1]-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(Object,green)|T],

B1-B2,W1-W2,R1-R2,[col(Object,green)|G1]-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(,)|T],B1-B2,W1-W2,R1-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

endijkstra dl(Items, L1-L7) :-

encolour dl(Items,L1-L2,L2-L3,L3-L4,L4-L5,L5-L6,L6-L7).

}
1©⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2©

}
3©

}
4©

Figure 3.15: Illustrative Example of Intended Database Updates

the list of colours in Colours will be known at runtime only and thus the predicate definitions indicated in
Fig. 3.15 should be accomplished by prior database updates. The predicates def encolour dl(+Colours)

and def endijkstra dl(+Colours) shall be responsible for writing to the database clauses like 1©– 3© and 4©,
respectively.

The present problem is more complex than that in Sect. 3.3.1 in two respects: both the number of clauses
for, and the arity of the predicate encolour dl will be known at runtime only.

Implementing def encolour dl/1 and def endijkstra dl/1

The top level definition of def encolour dl/1 is shown in Fig. 3.16. The following features are noteworthy:

• The old definition (if present) of encolour dl (with the same arity as the one to be implemented) is
removed from the database.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

112

Program Manipulations

def encolour dl(Colours) :-

length(Colours,N),

M is N + 1,

dynamic(encolour dl/M),

length(Vars,M),

Old Version =.. [encolour dl|Vars],

retractall(Old Version),

base clause(Colours,B Clause),

assert(B Clause),

((member(Colour,Colours),

recursive clause(Colour,Colours,R Clause),

assert(R Clause),

fail); true),

catch all clause(Colours,C Clause),

assert(C Clause).

} 	
 ��Implements 1©
⎫⎪⎪⎬
⎪⎪⎭

	
 ��Implements 2©

} 	
 ��Implements 3©

Figure 3.16: Top Level Definition of def encolour dl/1

• The auxiliary predicate base clause/2 creates the term for the base clause (marked 1© in Fig. 3.15),
followed by a database update. It is defined by the predicates

base_clause(Colours,(Head :- true)) :- length(Colours,N),

base(N,Head).

base(N,Term) :- diffvars1(N,D),

Term =.. [encolour_dl,[]|D].

diffvars1(N,D) :- functor(Term,dummy,N),

Term =.. [_|L],

diffterms(L,L,D).

where diffvars1/2 produces a list with a given number of differences of pairwise identical variables as
exemplified by

?- diffvars1(3,D).

D = [G287- G287, G288- G288, G289- G289]

• The terms for the recursive clauses (marked 2© in Fig. 3.15) are created by the auxiliary predicate
recursive clause/3 and written to the database within a failure driven loop. recursive clause/3

reads at the top level as

recursive_clause(Colour,Colours,(Head :- Body)) :-

length(Colours,N),

diffvars2(N,D),

head(Colour,Colours,T,D,Head),

body(T,D,Body), !.

where

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

113

Program Manipulations

1. diffvars2/2 produces a list with a given number of differences of pairwise distinct variables,

2. head/5 produces the term for the head of encolour ,

3. body/3 produces the term for the body of encolour .

head/5 and body/3 are respectively defined by

head(Colour,Colours,T,D,Head) :-

comb(Object,Colour,Colours,D,Modified),

Head =.. [encolour_dl,[col(Object,Colour)|T]|Modified].

body(T,D,Body) :- Body =.. [encolour_dl,T|D].

The predicate comb/5 combines the list of colours with the list of difference terms as exemplified below.

?- comb(Object,w,[r,w,g],[R1-R2,W1-W2,G1-G2],M).

Object = G429

R1 = G411 R2 = G412

W1 = G417 W2 = G418

G1 = G423 G2 = G424

M = [G411- G412, [col(G429, w)| G417]- G418, G423- G424]

In the definition of comb/5 (not shown here) the accumulator technique is used.

• Finally, the catch-all clause (marked 3© in Fig. 3.15) is created by the auxiliary predicate catch all clause/2

along similar lines to body/3 . (Its definition is not shown here).

The definition of def endijkstra dl/1 is broadly analogous to that of catch all clause/2 and is not
shown here. The full source code for the present version is available in the file dl.pl.

Exercise 3.18. In the above development, for simplicity, def encolour dl/1 was defined such that clause
3© in Fig. 3.15 does not contain any reference to the colours to be omitted; this was accomplished by 3© being
the last clause. The resulting definition of encolour dl will therefore be sensitive to the ordering of its clauses.
This is not ideal, however, as it prevents code to be interpreted declaratively.

Redefine def encolour dl(+Colours) such that it writes to the database code which is not sensitive to
clause reordering.

Hints.

• Aim at excluding the colours not in Colours by using the built-in predicate member/2 . If, for example,
Colours is unified with [black, white, red, green] , then def encolour dl/1 writes instead of 3©
the following clause to the database

encolour_dl([col(_, Clr)|T], B1-B2, W1-W2, R1-R2, G1-G2) :-

not(member(Clr, [black, white, red, green])),

encolour_dl(T, B1-B2, W1-W2, R1-R2, G1-G2).

• All we need is a new definition of catch all clause/2 , used in Fig 3.16. Use conj/2 (known from
Sect. 3.2.1, p. 102) to construct the conjunction of the two goals in the body of the new clause of
encolour dl . Each of the two conjuncts will be obtained by using =../2 .

• The solution is in dl.pl.

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

114

Program Manipulations

Performance Comparison

An experiment confirms that the enhanced version needs a lesser number of inferences than the version from
Sect. 3.3.1.

?- new items(Items),

Colours = [black,blue,violet,green,red,white],

def encolour dl(Colours), def endijkstra dl(Colours),

time(endijkstra dl(Items,Grouped-[])).

% 16 inferences in 0.00 seconds (Infinite Lips)

Grouped = [col(soot, black), col(coal, black), ...]

?- new items(Items),

Colours = [black,blue,violet,green,red,white],

replace dijkstra dl(Colours),

time(dijkstra dl(Items,Grouped-[])).

% 91 inferences in 0.00 seconds (Infinite Lips)

Grouped = [col(soot, black), col(coal, black), ...]

The earlier version will appear more efficient, however, if we repeat this experiment and take also into account the
overhead for creating and writing to the database the versions’ definitions. This apparent advantage disappears,

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Prolog Techniques

115

Program Manipulations

however, as soon as the list of items exceeds a certain length.

Creating Plain Implementations

Exercise 3.19. def encolour dl/1 and def endijkstra dl/1 gave rise to enhanced implementations which
themselves were using difference lists. Write analogues of these two predicates creating plain solutions of the
Dutch Flag Problem. More precisely, the implementations thus created should themselves be (the augmented)
analogues of the solution proposed in Exercise 2.10, p. 60. The interactive session in Fig. 3.17 overleaf illustrates
the desired behaviour of def encolour pl/1 and def endijkstra pl/1 .

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

116

Program Manipulations

�

�

�

�

?- listing(encolour pl).

ERROR: No predicates for ‘encolour pl’

No

?- def encolour pl([black,white,red,green]).

Yes

?- listing(encolour pl).

encolour pl([], [], [], [], []).

encolour pl([col(A, black)|B], [col(A, black)|C], D, E, F) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, white)|B], C, [col(A, white)|D], E, F) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, red)|B], C, D, [col(A, red)|E], F) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, green)|B], C, D, E, [col(A, green)|F]) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, B)|C], D, E, F, G) :-

encolour pl(C, D, E, F, G).

Yes

?- listing(endijkstra pl).

ERROR: No predicates for ‘endijkstra pl’

No

?- def endijkstra pl([black,white,red,green]).

Yes

?- listing(endijkstra pl).

endijkstra pl(A, B) :- encolour pl(A, C, D, E, F),

flatten([C, D, E, F], B).16

Yes

?- items(Items)17, endijkstra pl(Items,Grouped).

Grouped = [col(milk, white), col(snow, white), col(tomato, red),

col(blood, red), col(cherry, red)]

Yes

Figure 3.17: Example Session for Exercise 3.19

16In contrast to the special case in Exercise 2.10, now the number of lists to be concatenated will be known at runtime only.
Thus the concatenation is best accomplished by using flatten/2 and not by (repeated use of) append/3 .

17The predicate items/1 is as defined in Sect. 2.4, p. 57.

http://bookboon.com/

